陈镜明

基本信息

姓  名:陈镜明

职  称:加拿大皇家科学院院士、福建师范大学教授

电子邮箱:chenjm@fjnu.edu.cn

研究方向

植被遥感及陆地生态系统碳水循环等

个人履历

教  育:

博士 1986年 英国里丁大学 气象学专业

学士 1982年 南京气象学院(现南京信息工程大学) 气象学

工  作:

1986 - 1988   中国科学院北京地理学院 ,研究员

1988 - 1989   中国科学院北京地理学院,高级研究员

1989 - 1991   英属哥伦比亚大学,博士后

1991 - 1993   英属哥伦比亚大学,研究助理

1993 - 1997   加拿大遥感中心,研究员

1994 - 2000   加拿大渥太华大学,客座教授

1996 - 2009   加拿大约克大学,客座教授

1997 - 2000   加拿大遥感中心,高级研究员

1999 至今    南京大学,客座教授

2000 - 2000   加拿大遥感中心,首席研究员

2000 至今    加拿大多伦多大学,教授

2007 至今    南京信息大学,客座教授

2007 - 2011   南京信息大学应用气象学院,副院长

2007 至今    南京大学国际地球系统科学研究所,学术委员会主任

2008 至今    加拿大麦克马斯特大学,客座教授

2010 - 2011   加拿大多伦多大学环境中心,教务助理

2012 - 2014   加拿大多伦多大学地理与规划系,副主席

2020 至今    福建师范大学地理科学学院,教授


个人简介

陈镜明,加拿大高级首席科学家(2003),加拿大皇家科学院院士(2006),多伦多大学地理与规划系终身教授,教育部长江学者“讲座教授”,国际地球系统科学研究所(ESSI)学术委员会主任,中国科学院海外评审专家。1982年获南京气象学院学士学位,1986年获英国里丁大学博士学位。现任Remote Sensing of Environment 主编、Journal of Geophyiscal Research-Biogeosciences和Canadian Journal of Remote Sensing副主编、 Agricultural and Forest Meteorology 编委、美国通量观测网络科学指导委员会委员、中国科技部全球变化重大科学研究计划专家组成员、国务院侨办海外专家咨询委员会委员。

陈镜明教授在定量遥感方面、地球环境和气候变化以及在理保护环境方面做出了如下突出贡献:发明了测量叶面积指数的光学仪器;发展了用于卫星图像处理的最先进的几何光学4-尺度模式;发展了高光谱5尺度模式,成为机载图像分析和解译卫星图像的重要工具;利用卫星资料、地面资料和模型,发展了地面碳循环监测系统。在加拿大森林碳汇方面的研究成果对制定加拿大国家气候变化研究计划及其他相关的政策产生了影响。


代表性论文

Fu, S., Y. Wang, G. Miao, R. Wang, H. Zeng, B. Yang, and J. M. Chen*. 2025. Diurnal variations of below-canopy CO2 concentration in a subtropical forested valley. Earth and Space Sciences (in press).

 Yan, Y.*, B. Li, B. Dechant, M. Xu, X. Luo, S. Qu, G. Miao, J. Leng, R. Shang, L. Shu, C. Jiang, H. Wang, S. Jeong, Y. Ryu, J. M. Chen*. Plant traits dominate global spatiotemporal variations in photosynthetic efficiency. Nature Plants (in press)

 Tao, S.*, J. M. Chen*, Z. Zhang, Y. Zhang, and W. Ju. 2024. A downscaled high-resolution satellite-based solar-induced chlorophyll fluorescence dataset for China from 2000 to 2022. Scientific Data (in press).

 Liu, Y., J. M. Chen*, M. Xu, R. Wang, W. Fan, W. Li, L. Kammer, C. Prentice, T. F. Keenan, and N. G. Smith. 2024. Improved global estimation of seasonal variations in C3 photosynthetic capacity based on eco-evolutionary optimality hypotheses and remote sensing. Remote Sensing of Environment, 114338.

 Geng, J., J.-L. Roujean, A. Kuusk, Y. Pang, L. Tu*, T. Zhang, J. M. Chen*. 2024. A universal canopy gap fraction model for forests with various tree distributions based on Nilson’s models considering directional overlaps among crowns. Agricultural and Forest Meteorology, 352, 110026.

 Leng, J., J. M. Chen*, W. Li, X. Luo, R. M. Staebler, C. Rogers, H. Croft, and X. Xie. 2024. Optimizing seasonally variable photosynthetic parameters based on joint carbon and water flux constraints. Agricultural and Forest Meteorology, DOI: 10.21203/rs.3.rs-3832505/v1

 Xu, M., J. M. Chen*, Y. Liu, R. Wang, R. Shang, J. Leng, L. Shu, J. Liu, R. Liu, Y. Liu, and R. Yang. 2024. Assessing different leaf photosynthetic capacity datasets for estimation of terrestrial gross primary productivity. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2024.171400

 Leng, J., J. M. Chen*, W. Li, X. Luo, M. Xu, J. Liu, R. Wang, C. Rogers, B. Li, and Y. Yan. 2024. Global datasets of hourly carbon and water fluxes simulated using a satellite-based process model with dynamic parameterizations. Earth System Science Data,16, 1283–1300.

 Wang, J., J. M. Chen*, F. Qiu*, W. Fan, M. Xu, and R. Wang. 2024.  Simultaneous estimation of leaf directional-hemispherical reflectance and transmittance from multi-angular canopy reflectance. Remote Sensing of Environment, 304, 114025. https://doi.org/10.1016/j.rse.2024.114025

 Zhao, X., J. M. Chen*, Y. Zhang, Z. Jiao, F. Qiu, and R. Cao. 2024. Global mapping of forest clumping index based on GEDI canopy height. ISPRS Journal of Photogrammetry and Remote Sensing, 209, 1-16.

 Li, P., R. Shang*, J. M. Chen*, X. Lin, M. Xu, G. Yu, N. He, and L. Xu. 2023. Evaluation of five models for constructing forest NPP-age relationships in China based on 3121 field survey samples. Biogeosciences,  21 (2), 625-639.

 Shang*, R., J. M. Chen*, M. Xu, X. Lin, P. Li, G. Yu, N. He, L. Xu, P. Gong, L. Liu, H. Liu, and W. Jiao. 2023. China’s current forest age structure will lead to weakened carbon sinks in the near future. The Innovation, https://doi.org/10.1016/j.xinn.2023.100515.

 Guo, X., R. Wang*, J. M. Chen*, Z. Cheng, H. Zeng, G. Miao, Z. Huang, Z. Guo, J. Cao and J. Niu. 2023. Synergetic inversion of leaf area index and leaf chlorophyll content using multi-spectral remote sensing data. Geo-spatial Information Science, https://doi.org/10.1080/10095020.2023.2251540.

 Xie, X., J. M. Chen*, W. Yuan, A, Li, X. Guan, and J. Leng. 2023. A practical algorithm for correcting topographical effects on global GPP products. Journal of Geophysical Research: Biogeosciences, 128(8), DOI:10.1029/2023JG007553.

 Wang, R., J. M. Chen*, L. He, J. Shang, J. Liu, T. Dong and J. Liu. 2023. A novel semi-empirical model for crop leaf area index retrieval using RADARSAT-2 co- and cross-polarizations. Remote Sensing of Environment, 296(3–4):113727, DOI:10.1016/j.rse.2023.113727.

 Xu, M., R. Liu*, J. M. Chen*, Y. Liu, R. Shang, L. Qi, H. Croft, W. Ju, Y. Zhang, Y. He, F. Qiu, J. Li, and Q. Lin. 2022. Retrieving global leaf chlorophyll content from MERIS data using a neural network method. ISPRS Journal of Photogrammetry and Remote Sensing, 192, 66-82.

 Guan, X., J. M. Chen*, H. Shen, X. Xie, and J. Tan. 2022. Comparison of big-leaf and two-leaf light use efficiency models for GPP simulation after considering a radiation scalar. Agricultural and Forest Meteorology, 313, 108761

 Liu, Y.*, J. M. Chen*, L. He, Z. Zhang, R. Wang, C. Rogers, W. Fan, G. de Oliveira, and X. Xie. 2022. Non-linearity between gross primary production and far-red solar-induced chlorophyll fluorescence emitted from major biomes. Remote Sensing of Environment, 271, 112896.

 Yi*, L., J. M. Chen*, G. Zhang, X. Xu, X. Ming, W. Guo. 2021. Mosaicking push broom hyperspectral UAV images over complex scenes. Remote Sensing,13 (22), 4720.

 Wang, F.*, J. D. Harindintwali, D. C. W. Tsang, S. X. Chang, M. Kästner, D. Barcelo, K.Wei, X. He, S. Dietmann, J. Gong, C. Xiao, N. Jiao*, Y.-G. Zhu*, H. Jin*, A. Schaeffer, J. M. Tiedje*, and J. M. Chen*. 2021. Technologies and perspectives for carbon neutrality. The Innovation 2 (4), 100180.

 Chen, B., X. Lu, S. Wang*, J. M. Chen*, Y. Liu, H. Fang, Z. Liu, and F. Jiang. 2021. The impacts of foliage clumping on the estimation of global terrestrial evapotranspiration. Remote Sensing, 13(20), 4075; https://doi.org/10.3390/rs13204075.

 Chen, J. M., 2021. Carbon neutrality toward a sustainable future. The Innovation, 2(3), 100127.

 Li, Y., Q. Ma*, J. M. Chen*, H. Croft, X. Luo, T. Zheng, C. Rogers, J. Liu. 2021. Advanced physically-based two-step model inversion for retrieving leaf chlorophyll content in a deciduous forest from Sentinel-2 data. Remote Sensing of Environment, https://doi.org/10.1016/j.rse.2021.112618.

 Guan, X., J. M. Chen*, H. Shen, X. Xie. 2021. A modified two-leaf light use efficiency model for improving the simulation of GPP using a radiation scalar. Agricultural and Forest Meteorology, 307, 108546.

 Zhang, Q., J. M. Chen*, W. Ju, Y. Zhang, S. Chou, Z. Li, B. Chen, J. Li, N. Shan, B. Qiu, J. Li, X. Zhang, and Z. Zhang. 2021. Angular normalization of ground-based multi-angle sun-induced chlorophyll fluorescence for assessing vegetation productivity. Journal of Geophysical Research: Biogeosciences DOI: 10.1029/2020JG006082.

 Chen, J. M., and J. Liu, 2020. Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sensing of Environment, 237,111594. http://doi.org/10.1016/J.RSE.2019.111594.

 Chen, J. M., J. Liu, and X. Luo, 2020. Modification of the Penman-Monteith ET model based on the principle of water and carbon cycle coupling. Transactions of Atmospheric Science, 43(1): DOI:10.13878/jcnki.dqkxx.20191112007. (invited review paper in Chinese).

 Chen, J. M., W. M. Ju, P. Ciais, N. Viovy, R. Liu and Y. Liu. 2019. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nature Communications, 10:4259 | https://doi.org/10.1038/s41467-019-12257-8.

 Chen, J. M., L. Legendre, and R. Benner, 2018. A recent project shows that the microbial carbon pump is a primary mechanism driving ocean carbon uptake. National Science Review, doi: 10.1093/nsr/nwy006.

 Chen, J. M., G. Mo, and F. Deng. 2017. A joint global carbon inversion system using both CO2 and 13CO2 atmospheric concentration data. Geoscientific Model Development, 10: 1131–1156, DOI:10.5194/gmd-10-1131-2017.

 Chen, Z., Liu, J*., Qie, X*., Cheng, X., Shen, Y., Yang, M., Jiang, R., Liu, X., Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection, Atmospheric Chemistry and Physics, 22, 8221–8240, https://doi.org/10.5194/acp-22-8221-2022, 2022.

 Ge, C., Liu, J.*, Cheng, X.*, Fang, K., Chen, Z., Chen, Z., Hu, J., Jiang, D., Shen, L., Meng, M., Impact of regional transport on high ozone episodes in southeast coastal regions of China, Atmospheric Pollution Research, 13, 101497, https://doi.org/10.1016/j.apr.2022.101497, 2022.

 Chen, Z., Liu, J.*, Cheng, X., Yang, M., and Wang, H., Positive and negative influences of typhoons on tropospheric ozone over southern China, Atmospheric Chemistry and Physics, 21, 16911–16923, https://doi.org/10.5194/acp-21-16911-2021, 2021.

 Cheng, X., Liu, J.*, Zhao, T.*, Gong, S., Xu, X., Xie, X., and Wang, R., A teleconnection between sea surface temperature in central and eastern Pacific and winter haze variations in southern China, Theoretical and Applied Climatology, https://doi.org/10.1007/s00704-020-03434-7, 2021.

 Chen, X., Jiang, Z.*, Shen, Y., Li, R., Fu, Y., Liu, J.,* Han, H., Liao, H.*, Cheng, X., Jones, D. B. A., Worden, H., Abad, G. G., Chinese regulations are working — Why is surface ozone over industrialized areas still high? Applying lessons from northeast US air quality evolution. Geophysical Research Letters, 48, e2021GL092816. doi.org/10.1029/2021GL092816, 2021.

 Cui, Z., Wang, Y., Zhang, G. J., Yang, M., Liu, J., and Wei, L., Effects of improved simulation of precipitation on evapotranspiration and its partitioning over land. Geophysical Research Letters, 49, e2021GL097353. https://doi. org/10.1029/2021GL097353, 2022.

 Hu, J., Zhao, T., Liu, J., Cao, L., Wang, C., Li, Y., Shi, C., Tan, C., Sun, X., Shu, Z., and Li, J., Exploring the ozone pollution over the western Sichuan Basin, Southwest China: The impact of diurnal change in mountain-plains solenoid, Science of the Total Environment, 839, 156264, http://dx.doi.org/

 Gao, D., Xie, M., Liu, J., Wang, T., Ma, C., Bai, H., Chen, X., Li, M., Zhuang, B., and Li, S., Ozone variability induced by synoptic weather patterns in warm seasons of 2014–2018 over the Yangtze River Delta region, Atmospheric Chemistry and Physics, 21, 5847–5864, https://doi.org/10.5194/acp-21-5847-2021, 2021.

 Jiao, D., Ji, X., Liu, J., Zhao, L., Jin. B., Zhang, J., and Guo, F, Quantifying spatio-temporal variations of evapotranspiration over a heterogeneous terrain in the arid regions of Northwestern China, International Journal for Remote Sensing, 42:9, 3231-3254, dio.org/10.1080/01431161.2020.1868604, 2021.

 Ji, X., Zhao, W., Jin, B., Liu, J., Xu, F., Zhao, H., Seasonal variations in energy exchange and evapotranspiration of an oasis-desert ecotone in an arid region, Hydrological Processes, 35, e14364, doi.org/10.1002/hyp.14364, 2021.

 Fang, K., Yao, Q. Guo, Z., Zheng, B., Du, J., Qi, F., Yan, P., Li, J., Ou, T., Liu, J. He, M., and Trouet, V., ENSO modulates wildfire activity in China, Nature Communications, 12, 1764, https://doi.org/10.1038/s41467-021-21988-6, 2021.

 Chen, S., Yao, Q., Chen, X., Liu, J., Chen, D., Qu, T., Liu, J., Dong, Z., Zheng Z., Fang, K., Tree-ring recorded variations of 10 heavy metal elements over the past 168 years in southeastern China, Elementa-Science of the Anthropocene, 9, 1, https://doi.org/10.1525/elementa.2020.20.0007, 2021.

 Meng, L., Liu, J.*, Tarasick, D. W., Randel, W. J.*, Steiner, A. K., Wilhelmsen, H., Wang, L., and Haimberger, L., Continuous rise of the tropopause in the Northern Hemisphere over 1980-2020, Science Advances, 7 (45), eabi8065, DOI: 10.1126/sciadv.abi8065, https://www.science.org/doi/10.1126/sciadv.abi8065, 2021.